
Robustness via run-time adaptation of contingent plans

John L. Bresina and Richard Washington*

NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035

{jbresina, rwashington}@arc, nasa. gov

Abstract

In this paper, we discuss our approach to making the
behavior of planetary rovers more robust for the pur-
pose of increased productivity. Due to the inherent
uncertainty in rover exploration, the traditional ap-
proach to rover control is conser_-ative, limiting the
autonomous operation of the rover and sacrificing per-
formance for safety. Our objective is to increase the
science productivity possible within a single uplink by
allowing the rover's behavior to be specified with flex-
ible, contingent plans and by employing dynamic plan
adaptation during execution. We have deployed a sys-
tem exhibiting flexible, contingent execution; this pa-
per concentrates on our ongoing efforts on plan adap-
tation.

Plans can be revised in two ways: plan steps may
be deleted, with execution continuing with the plan
suffix; and the current plan may be merged with an
"alternate plan" from an on-board library. The plan-
revision action is chosen to maximize the expected
utility of the plan. Plan merging and action deletion
constitute a more conservative general-purpose plan-
ning system; in return, our approach is more efficient
and more easily verified, two important criteria for
deployed rovers.

Introduction

In this paper, we discuss our approach to making the
behavior of planetary rovers more robust for the pur-

pose of increased productivity. There is a significant

degree of inherent uncertainty in rover planetary ex-

ploration with respect to resource availability and us-

age, task duration, and degree of successful task execu-

tion. In addition, there is scientific uncertainty; that is,

uncertainty in what instrument readings might reveal

and, hence, which targets are going to be the most

important. The traditional approach to handling all

such sources of uncertainty is to uplink conservative

command sequences and limit what can be performed

autonomously by a rover. Rover behavior is rigidly

governed by the uplinked sequence of commands, and

NASA contractor with RIACS.

when execution falls outside this narrow scope of al-

lowed behavior, the rover must sit idle awaiting a new

sequence until the next communication opportunity.

Our objective is to increase the science productivity

possible within a single uplink by allowing the rover's

behavior to be specified with flexible, contingent plans

and by employing dynamic plan adaptation during ex-

ecution. In our approach, plans have flexible temporal

windows on each command and can include contingent
branches conditioned on the runtime environment. A

contingent plan can be thought of as a tree of possi-

ble behaviors that is planned in advance to account

for possible failures that might occur or opportunities

that may arise during execution. Contingent branches

can also represent disjunctive choices, in which case
the rover must choose the best branch at execution

time. In order to intelligently make this decision, the

plan includes utility estimates based on the value of

the plan's tasks and the probability that the tasks will

be successfully executed.

During execution, the overall utility of the uplinked

plan may change due to unforeseen science opportu-
nities or changes in resource availability and demand

profiles. In this case, the rover's behavior will be sub-

optimal unless its plan is revised. Furthermore, the

scope of the plan may be exceeded due to failures. In

this case, without plan revision, the rover must wait

until a new plan is uplinked. We address the issues

of plan suboptimality and plan failures by performing

limited plan revision on board. In particular, plans

can be revised in two ways: plan steps may be deleted,

with execution continuing with the plan suffix; and the

current plan may be merged with an "alternate plan"

from an on-board library. The plan-revision action is

chosen to maximize the expected utility of the plan.

If plan revision cannot increase the expected utility of

the current plan, it remains unchanged.

Plan merging and action deletion constitute a more

conservative plan-revision approach than one that em-

ploys an on-board general-purpose planning system,

whichcanr_,ldanfr.ln scratch.Plannwrging and ac-

tion dcletiorl are less comph,x and, hence, mr)re ef-

ficient, which is an imt)ort;mt advantage giw,n the

limited computational resources of planet;try rovers.

Furthermore, our approach poses an easier software

verification problem, which is advantageous in gain-

ing the confidence and acceptance of flight operators.

Our long-term strategy is to continue to increase rover

on-board planning capabilities as flight processors be-

come more powerful and as rover autonomy software

becomes more acceptable.

In the next section, we describe some of our previ-

ous work that serves as the background to the current,

ongoing extensions which are the focus of this paper.

We then present an illustrative example of the robust

behavior we hope to enable, followed by a discussion

of our proposed approach to run-time plan adaptation.
The last two sections describe some related work and

discuss our effort's current status and open issues.

CRL and Architecture

_,Ve have developed a flexible, contingent plan language

that can represent a large family of valid execution

behaviors and an executive that incrementally selects

and carries out the most appropriate behavior (from

the uplinked plan) in response to the rover's internal
status and its interaction with the environment. The

architecture achieves robust operation through the ex-
ecutive's interactions with the state identification, re-

source management, and plan adaptation mechanisms

(each of these is discussed below). For further details

on this background material, see (Bresina et al. 1999;

Washington, Golden, & Bresina 1999; Washington et
al. 1999)

The plan language used by the ground planning

tools and on-board execution is the Contingent Rover

Language (CRL). CRL was designed to serve as the

communication medium between the ground opera-

tions team and a planetary rover, providing a flexible,

contingent language that remains simple enough for

planning and verification and compatible with existing

command languages.

A CRL command plan contains a nominal sequence

with a set of contingent branches, as well as a library of

alternate plans (which are discussed in more detail be-

low). If there are no deviations from the a priori execu-

tion expectations, then the rover's behavior is governed

by the nominal sequence. The contingent branches

Specify alternative courses of action in response to ex-

pectation deviations. Within any contingent branch

there may be further contingent branches; hence, the

plan is a tree of alternative courses of action:

To retain simplicity for planning and verification,

CRL (loos not include any control constructs for loop-

ing. The ¢h,._i_n decision we made is that when a con-

trol loop is needed for execution robustness, it shouhl

be embedded within the implementation of a high-level
CRL command.

The plan ropresontation in CRL is a hiorarchical,

branching structure. The basic data type in CRL is a

node; the subtypes provide the mechanisms for hier-

archies and branching. CRL has three node subtypes:

block, task, and branch; a command plan is defined to

be a node, typically of subtype block. A block repre-

sents a sequence of nodes, over which there may be

shared state conditions. Nested blocks provide the hi-

erarchical structure of plans.

A task represents an action to execute. A task also

specifies what action to perform if the task is inter-

rupted due to execution failure. In addition, a task

specifies a relative priority and expectations about re-

source and time usage. A branch represents a choice

point in the command plan. Each of the execution

paths is represented by an option. Nested branches
lead to a tree of execution paths. An option is not a

node subtype but a separate data type that has one

subtype: alternate plan. Options and alternate plans

specify the conditions under which they are eligible for
execution and the node (typically of subtype block) to

execute.
Each node has associated with it a set of conditions

that must be satisfied for successful execution; the fol-

lowing are the condition types.

• start-conditions: The set of conditions that must be

true for the node to begin execution. Conditions
can include information about the internal state of

the rover (e.g., wheel current), external state (e.g.,
location), and time windows.

• wait-for-conditions: A subset of start-conditions for
which the rover will wait until they become true.

Other conditions will fail without waiting. Some

conditions are automatically waited for whether or

not that is specified explicitly; e.9., a constraint on

when an action can start executing.

• maintain-conditions: A list of conditions that must

be true throughout node execution

• end-conditions: A list of conditions that must be

true at the end of node execution, to verify that

an action had the intended effects. Constraints on

action duration can be included here.

The rich expressiveness of temporal and other state
constraints on the plan supports effective specification

of science goals and safety policies, as well as providing

_ Conditional]_

Utility-Based
Executive

j i s'at JManager Identifier

_ Rover _Control

Figure 1: On-board Architecture.

increased flexibility during execution. For example,

rather than time-stamps, each action can have a start

time interval (and an end time interval).

A node also includes information regarding the ex-

pected utility of executing the rest of the plan, as well

as information regarding how to react to execution

failures: execution may continue to the next node or
abort.

Our current on-board autonomy architecture, illus-

trated in Figure 1, consists of the following four com-

ponents: a conditional, utility-based executive, the re-

source manager, the state identifier, and the rover con-

trol component.

The executive is responsible for interpreting the

command sequence coming from ground control, check-

ing run-time resource requirements and availability,

monitoring plan execution, and potentially selecting

alternative plan branches and modifying the plan if

the situation changes.

The rover control is responsible for real-time execu-

tion of motor and sensing commands from the execu-
tive, as well as continual low-level state monitoring.

The resource manager receives estimated task re-
source profiles, monitors current and planned resource

usage, and notices deviations from resource expecta-

tions. The rover executive adapts its actions in con-

junction with the resource manager.
The state identifier receives low-level state informa-

tion from the rover control component and uses its

models of rover mechanics and behavior to identify

the qualitative system state used by the executive.

In addition, the state identifier is responsible for de-

tecting anomalous states and notifying the executive

about them. Our approach to state identification is

to combine continuous probabilistic state estimation

using Kalman filters (Grewal & Andrews 1993) with

discrete qualitative state estimation using a Markov-

model repr_,seatati_,n. This is an ongoing effort, and

has not yet be,_n integrated into the rover software.

In our current row:r executive, plan execution pro-

ceeds by verifying conditions on each node and execut-

ing it when resource, time, and state constraints allow.

At branch points in the plan, execution proceeds on the

enabled branch with highest utility. This strategy al-

lows the rover to operate in a large number of possible

situations from a single uplinked plan. The initial es-

timate of the utility of executing actions is computed

on the ground with respect to the expected resource
and time availability. These estimates are only ap-

proximate -- the actual time and resource availability

is only known at execution time.

To better handle uncertainties, we have developed

methods to update plan utilities on board at runtime
to reflect the current best estimate of action utilities

(Bresina & Washington 2000). Because the actions in

our plan language can start Within a flexible temporal

interval, the expected utilities of the contingent options

depend on the time that the branch point is reached

during execution. Hence, a single utility measure is

insufficient, and we need to compute a utility distri-

bution that maps possible action start times to the

expected plan-suffix utility, i.e., the expected utility of

executing the plan suffix starting with that action. The

plan-suffix utility distribution is computed by forward

propagation, to calculate time windows when actions

could possibly be executed according to resource and

temporal constraints, followed by backward propaga-

tion of the utility of individual actions, which, when

combined with the probability of success and failure

of actions, provides the expected utility. More details

can be found in (Bresina & Washington 2000).

Expected plan-suffix utility depends on when actions

can execute and with what probability. The time over

which an action executes and the probabilities of suc-

cess and failure are affected by all the constraints in
the action's conditions (pre-, maintain, and end), as

well as by the inherent uncertainty in action durations.

As plan execution proceeds, the temporal wir/dows for
plan actions narrow, resource availability can change,

and rover state can change in unpredictable ways. Such

changes affect the execution time and success proba-

bilities and, thus, the expected utilities. Note, how-

ever, that even though temporal changes can affect

the probabilities of when future actions will start, the

plan-suffix utility distributions of these actions do not

have to be recomputed because they are conditioned

on start time. Although the use of utility distributions

does reduce utility recomputations, it does not elim-

inate them; e.g., changes in resource availability can

require dynamic utility updates.

Example

As an illustration of the type of problenL where plan

modification is appropriatf_, we present an example

frorn the domain of rover exploration aml show how

the rover could react in this situation.

Imagine a scenario where scientists have identified an

interesting rock near the rover. They construct a plan
for the rover, where the primary goal is to acquire in-

formation about the chemical composition of the rock,

followed by the transmission of the results to Earth.
The rover's instruments include an arm-mounted spec-

trometer, another spectrometer mounted on the pan-

tilt head on the central mast, and high-resolution sci-

ence cameras also on the pan-tilt head. The expected

quality of information from each instrument is decreas-

ing in the order presented, as is the likelihood of failure

to acquire data.

The goal of acquiring information is first decom-

posed into data acquisition via the arm-mounted spec-
trometer and spectral analysis. These subgoals are

achieved by placing the arm on the rock, taking read-

ings with the spectrometer, and analyzing those read-

ings. However, there are a number of possible failures

that could occur, including:

• the rover may not succeed in driving close enough to

the rock,

• arm placement on the rough surface of the rock may

fail to make contact close enough to the surface nor-

mal for spectrometry,

• the spectrometer itself may malfunction,

• the rover may run too low on energy.

Although a reasonable first attempt to recover from the
failure may be to retry the action that failed, repeated

failures may suggest that an alternative approach may

be preferable. For example, if the rover is unable to

deploy the arm or reach the rock, the mast-mounted

spectrometer is a more appropriate backup instrument.
If the energy available is too low for either of those

instruments, the science cameras remain as the only
reasonable instrument to use.

Suppose in executing the plan, the rover tries to

place the arm on the rock but fails. After multiple

attempts, the rover decides to use its mast-mounted

spectrometer. After taking spectral data, the rover

analyzes the data on board. A fortuitous result of the

analysis is that a signature of carbonates is found in the

spectral signal. Based on this finding, further spectra]

measurements and high-resolution images are taken to
send to Earth for confirmation by scientists.

The above hypothetical execution trace, involw's a

number of d_,cisions taken reactively and oplmrtunisti-

eally. The dc,.cision of how many times to try the arm

placement couhl be a hard-coded number, but a better

solution wouhl b_. t.o make it depend on the expected

success and expect_d quality of the resulting informa-

tion. At some point, the diminishing hope of successful

arm placement would cause the rover to abandon arm-

based spectrometry in favor of a mast-based spectrom-

eter reading. An opportunistic decision would arise

from finding carbonate data; this would introduce a

new goal, to confirm the reading, into the rover's plan.

Although this plan could be constructed as a com-

plex conditional structure, a more compact and more

general approach to solving this type of problem is to

use utility-based plan modifications based on a library

of plan fragments. Our approach is designed around
this idea.

Run-time plan adaptation

Utility distributions allow the rover to choose the best
course of action within its current plan, but this is of-

ten not sufficient due to the dynamic environment. The

size and complexity of the "universal plan" necessary

to handle all possible events renders it impractical to

build, verify, and transmit to the rover. Instead, our

approach is to adapt the uplinked plan during execu-

tion. The objective of this plan revision is to increase

the utility of the plan and, hence, the productivity of

the rover. For purposes of computational efficiency and

verifiability, we propose to limit plan revision to two

types of operations: skipping steps of an existing plan,
and merging plans from an "alternate plan library"

with the existing plan. The approach described here

is work in progress, and we expect to learn from our

experience in implementing and testing the approach

on the real-world problem of controlling a rover per-

forming scientific exploration.

The execution system will skip a node of the plan

when the expected utility, at the current time instant,

of executing the plan suffix starting with the current

action is less than the expected utility of executing the

plan suffix starting with the following action. The step

skipped may be an executable action, or a higher-level

block in the hierarchy. Since some nodes in the plan

may depend on previous nodes, removing the current

node may imply removal of some future nodes. For ex-

aanple, if the energy level of the rover after performing

spectrometer readings is dangerously low, the analysis

may be skipped in favor of simply sleeping until data

communications time, sending the raw data back to
Earth. In that case, the analysis routines would be

skipped, and operations to queue the analysis results

fordownlinkwouldalsobedeletedmsaresuit.
Dueto the removal_f dependentactions,the ex-

pectedutility of theplansuffixstartingwith thefol-
lowingactionmaychange if the current step is skipped.

The revised expected utility will need to be computed,
either in advance or at run time, t.o evaluate the al-

ternative courses of action. Computing the expected

utility of a modified plan can be performed efficiently

by propagating the change in utility backwards from

removed steps to the current point in the plan.

The other mechanism for plan modification is to use

alternate plans. An alternate plan specifies a global

contingency for execution, as opposed to the local

contingent and disjunctive branches at specific points

within the plan. Alternate plans may be used to cover

global failures, such as mechanical malfunction, instru-

ment recalibration, and target loss, as well as global

opportunities such as science discoveries or resource

surpluses. In our example, obvious places for alternate

plans would be instrument retries, backup methods for

achieving goals, and opportunistic data collection. The

impact of global branches is to increase the plan's ef-

fective branching and, thus, its coverage.

In contrast to local branches, the global branches

are considered whenever their eligibility conditions are

satisfied. During execution, when there are eligible al-

ternate plans, the executive must choose between the

following three options: simply continue with the exist-

ing plan, execute an alternate plan followed by contin-

uation of the existing plan, or replace the rest of the

existing plan with an alternate plan. The expected

utility of all the options must first be estimated, then

the executive will choose the most promising option.

An alternate plan may be applicable to a condition

that arises anywhere within the active plan hierarchy.

For example, a maintenance condition that applies to

a plan block may be violated, and an alternate plan
could be invoked to reestablish the condition rather

than failing the entire block of execution and losing

the execution context. Alternatively, an alternate plan

could apply to a single executable action, for example,

to continue a command that was suspended to handle

an anomalous power state.

Since an alternate plan may contain actions that

are either redundant or incompatible with the cur-

rent plan, the execution system will modify the current

plan, as described above for skipping steps, in order to

•find the highest-utility plan resulting from merging the

alternate plan with the existing plan. Additionally, if

the alternate plan serves to re-establish maintenance

conditions that were Lost, then the current action, or

set of actions, may need to be re-executed after the

alternate plan. For example, if the rover tries and fails

to place the arm on a rock, then an alternate plan

may rcposition the rover with respect to the rock, from

which point, the rover may retry the arm placement.

We retain the gc_al structure of the plan to indicate

the possible "restart" points within the plan. The plan

may continue from the current point in execution, or

it may back up to the beginning of any subgoaI to

which the failed action belongs. In our example, the

arm placement retries and the backup data collection

methods are all in service of the same goal, so exe-

cution would restart the achievement of the goal with

each new action proposed. If too much time elapses

during the retries, then the rover might need to skip

ahead to its communication with Earth, at which point

the goal has been lost and will not be reachieved, unless

it is re-specified by ground scientists in a subsequent

plan.

The alternate plans are individually verified on the

ground with respect to the mission flight rules; how-

ever, additional on-board verification is needed during

plan merging to ensure there are no harmful interac-

tions between the existing plan and the alternate plan.

For this purpose, constraints that are required for plan

validity and flight safety will be encoded as annota-

tions in alternate plans, as well as in uplinked plans.

As alternate plans are first considered and then merged

into the executing plan, the constraints may identi_"

conflicts that will change the applicability of planned

actions, potentially even eliminating them from the fi-

nal plan. The final utility of the resulting plan will

determine whether the modified plan is preferabIe to

the unmodified plan or to another plan modification.

Related Work

A few areas of planning research have dealt with sim-

ilar, although not identical, aspects of planning and

plan adaptation. Differences in planning frameworks,

representations, and application domains have led to

the differences between these approaches and our own.

Plan merging in classical planning (Tsamardinos,

Pollack, & Horty 2000; Yang 1997) is concerned with

finding a global plan to achieve multiple goals by com-

bining separate plans for each goal. In our framework,

the notion of goal achievement (which is all-or-none)

is replaced by utility (which is continuous). In our

framework, plans that fail to achieve one or more goals

would have reduced utility, whereas in the classical

approach, such plans would have 0 utility and others

would have either equivalent or cost-dependent utility.

Resolving precondition-postcondition dependencies, as

in the classical STRIPS representation, does not by itself

lead to plans of maximal utility.

Yang (Yang 1997) addresses "optimization-based

plan sf,h,¢'tion," using _l.heuristic approach to find the
minimal-cost plan by merging separate plans. Once

again, this i_ dosigned to find a plan that achieves mul-

tiple goals with minimal cost,, as opposed to maximiz-

ing overall plan utility while allowing for partial goal
failures.

Case-based planning (Hammond 1988; Alterman

1988) is primarily concerned with reusing plans from a

library in order to increase the efficiency of plan gen-

eration. The key challenge is efficiently retrieving the

most relevant plan and then adapting it to fit the cur-

rent context. Our focus is on plan repair via merging,

and the retrieval process (as well as the merging pro-

cess) is based on expected utility.

Plan repair in classical planning (Tate 1977; Wilkins

1988) is concerned with finding replacements for "plan

wedges" whose conditions have failed. Although our

goal structure resembles plan wedges, we are concerned

with finding a repair that maximizes the global util-

ity, rather than concentrating on restoring conditions
of the remainder of the plan. We expect that simi-

lar behavior would result in some cases, because the

utility of a plan that can pick up execution with the
remainder of the plan will often be higher than one

that requires dropping large pieces of the plan suffix.

However, the assumption, implicit in the classical plan-

ning approach, that the system can re-achieve the ex-

act state originally" described in the plan is, in general,

not valid for a plan representation that describes tem-

poral and dynamic state conditions.

Status and Open Issues

The first version of our rover executive was used on

board the Marsokhod rover in an Ames field test in

February, 1999 in the Mojave Desert. A new version
of the executive was used on board the K9 rover in a

joint JPL-Ames field test, held in May, 2000 in Nevada.

Both of these versions supported flexible, contingent

execution, but they did not update utilities nor use

alternate plans. We have implemented prototype ver-
sions of the executive for alternate plans and utility-

based execution. Our next steps will be to augment

the plan language with goal structure constructs and

to integrate the capabilities into the overall rover ex-

ecutive system.

This work raises a number of open issues. The in-

teraction of branch points with action skipping can be

complex. A branch point is a choice dictated by condi-
tions on the state, resources, and time; thus, it may not

be arbitrarily deleted from the plan. If a branch point

does not depend on the skipped action, nor on prior
actions deleted due to the skipped action, then the

branch point is still valid. In this case, actions within

any of the branches will be d¢,h'ted if they are depen-

dent on the skipped action. Action deletion can be per-

formed independently on each branch, since there is no
interaction across branches. On the or.her hand, when

a branch point is dependent on a deleted action, then

the conditions may no longer make sense; e.g., con-

sider a bram:h dependent on the outcome of a deleted

experiment. For such cases, we are considering allow-

ing branch-point deletion, using an annotation that in-

dicates which branch should be followed (i.e., replace

the subtree). The correct treatment of this case will

require careful consideration of the intended semantics

of branch points in the presence of action deletion.

In addition, the ability to skip nodes and invoke al-

ternate plans at multiple levels of the hierarchy intro-

duces complexity into the execution semantics. One

instance of this is that recovery plans need to be consid-

ered before the execution context is "popped" and lost;

the comparison of expected utilities with and with-

out recovery must take into account the full impact

of changes on the execution context.

Another issue is that iteration is not explicitly han-

dled in our framework. This design choice was made to

simplify the task of constructing plans and evaluating

their utility. Loops may be unrolled, but an accurate

representation would require branches at the end of
each iteration. This increases the amount of memory

required to store the (redundant) plan steps for each

iteration. The most elegant solution would be to rep-

resent explicitly the iteration, but this would require

more complex planning and utility-evaluation tech-

niques, perhaps moving towards Markov-model ap-

proaches.

We are also exploring other forms of on-board plan

modification. We are collaborating on a project that

is exploring Markov-model approaches to selecting

among possible task decompositions, evaluating goal
achievement, and potentially reordering goals to opti-

mize plan quality (Bernstein et al. 2001; Zilberstein &
Mouaddib 1999). This will allow more extensive plan

modifications, while respecting the original plan goals.

Acknowledgments: We would like to acknowledge
David E. Smith, Keith Golden, and Trey Smith for

their contributions to the design of the Contingent

Rover Language. We would also like to acknowledge
the current K9 rover team for their support of rover

operations and field tests: Kevin Bass, Maria Bualat,

Larry Edwards, Lorenzo Flueckiger, Linda Kobayashi,

and Anne Wright.

References

Alterm;m, R. 1988. Adaptive planning. Cognitive

Science 12:393-421.

Bernstein, D.; Zilberstein, S.; Washington, R.; and

Bresina, J. 2001. Planetary rover control ,as a markov

decision process. In Proceedings of the AAAI Spring

Symposium: Game Theoretic and Decision Theoretic

Agents.

Bresina, J. L., and Washington, R. 2000. Expected

utility distributions for flexible, contingent execution.

In Proceedings of the AAAI-2000 Workshop: Repre-
sentation Issues for Real- World Planning Systems.

Bresina, J.; Golden, K.; Smith, D. E.; and Washing-

ton, R.. 1999. Increased flexibility and robustness for
Mars rovers. In In Proceedings of the Fifth Interna-

tional Symposium on Artil%ial Intelligence, Robotics,

and Automation in Space.

Grewal, M. S., and Andrews, A. P. 1993. Kalman

Filtering: Theory and Practice. Prentice Hall.

Hammond, K. J. 1988. Case-based planning. In

Kolodner, J., ed., Proceedings of Workshop on Case-

Based Reasoning, 17-20.

"rate, A. 1977. Generating project networks. In Pro-

ceedings of IJCAI- 77, 888-893. IJCAI.

Tsamardinos, I.; Pollack, M. E.; and Horty, J. F.

2000. Merging plans with temporal constraints, tem-

poraJly extended actions, and conditional branches.
In Proceedings of the Fifth International Conference

on Artificial Intelligence Planning Systems.

Washington, R..; Golden, K.; Bresina, J.; Smith,
D. E.; Anderson, C.; and Smith, T. 1999. Au-

tonomous rovers for mars exploration. In Proceedings

of The 1999 IEEE Aerospace Conference.

Washington, R.; Golden, K.; and Bresina, J. 1999.

Plan execution, monitoring, and adaptation for plan-

etary rovers. In In Proceedings of the IJCAI-g9 Work-

shop: Scheduling and Planning meet Real-time Mon-

itoring in a Dynamic and Uncertain World.

Wilkins, D. E 1988. Practical Planning. Morgan

Kaufman.

Yang, Q. 1997. Intelligent Planning: A Decomposi-
tion and Abstraction Based Approach. Springer.

Zilberstein, S., and Mouaddib, A.-I. 1999. Reactive

control of dynamic progressive processing. In Pro-

ceedings of IJCAL 1268-1273.

